Theory of electric transport through Fe/V/Fe trilayers inclu- ding the effect of impurities
نویسندگان
چکیده
The influence of Al and Si impurity layers on the giant magnetoresistance (GMR) and the magnetic properties of Fe/V/Fe(110) trilayers is investigated. The calculations are performed by employing the spinpolarized Kubo-Greenwood approach and the screened Korringa-Rostoker method for layered systems. All calculations are carried out with a fully-relativistic version. Therefore, we are able to consider also anisotropic magnetoresistance effects, which are common in Fe/V systems. We find that the AMR always makes a tiny contribution to the resistivity in alike multilayers so that the magnetoresistance is entirely due to the GMR. A reduction of the GMR due to the Al and Si impurities is observed for current in-plane (CIP) and perpendicular (CPP) geometry. However, in the case of CIP geometry the influence of the impurities decreases with increasing V layer thickness, whereas in the CPP case the difference alternates between 0 and 7 %.
منابع مشابه
Understanding Hydrogen Adsorption in MIL-47-M (M = V and Fe) through Density Functional Theory
The present paper aims to investigate the role of open metal site metal-organic frameworks (MOFs) on hydrogen adsorptivity using periodic boundary condition (PBC) density functional theory (DFT). Hence, MIL-47-M (M = V and Fe) were selected and one hydrogen molecule adsorptivity was calculated in different orientations on them. Four different chemical sites were identified in every cluster sect...
متن کاملFirst principles modeling of tunnel magnetoresistance of Fe/MgO/Fe trilayers.
We report ab initio calculations of nonequilibrium quantum transport properties of Fe/MgO/Fe trilayer structures. The zero bias tunnel magnetoresistance is found to be several thousand percent, and it is reduced to about 1000% when the Fe/MgO interface is oxidized. The tunnel magnetoresistance for devices without oxidization reduces monotonically to zero with a voltage scale of about 0.5-1 V, c...
متن کاملAB INITIO STUDY OF ELECTRIC TRANSPORT AND INTERLAYER EXCHANGE COUPLING IN Fe/Si/Fe SYSTEMS
We present a first principles study of the magnetoresistance (MR) perpendicular to the planes of atoms and the interlayer exchange coupling (IEC) in Fe/Si/Fe trilayers. In both cases the dependence on the number of spacer layers is investigated, whereby the spacer thickness ranges between 3 and 21 Å for the IEC and extends to 33 Å for the MR in order to obtain the asymptotic behavior. Additiona...
متن کاملترابرد الکتریکی وابسته به اسپین در ساختارهای نامتجانس Fe-MgO-Fe
In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ) which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR). For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in...
متن کاملStudy of Sputtered Fe/tSi/Fe Trilayer Films: Magnetic and Electronic Properties
A series of trilayers of sputtered Fe/Si/Fe were grown to study the interface characteristics and magnetic coupling between ferromagnetic Fe layers (30 Å thick) for Si spacer thickness (tSi) ranging from 15 Å to 40 Å. Grazing incidence x-ray diffraction, AFM, resistivity and x-ray photoelectron spectroscopy (XPS) measurements show substantial intermixing between the layers during deposition whi...
متن کامل